
J. Fluid Mech. (2000), vol. 425, pp. 335–366. Printed in the United Kingdom

c© 2000 Cambridge University Press

335

Theoretical and computational aspects of
the self-induced motion of

three-dimensional vortex sheets

By C. P O Z R I K I D I S
Department of Mechanical and Aerospace Engineering, University of California,

San Diego, La Jolla, California 92093-0411, USA
cpozrikidis@ucsd.edu

(Received 24 May 1999 and in revised form 22 June 2000)

Theoretical and computational aspects of the self-induced motion of closed and
periodic three-dimensional vortex sheets situated at the interfaces between two inviscid
fluids with generally different densities in the presence of surface tension are con-
sidered. In the mathematical formulation, the vortex sheet is described by a continuous
distribution of marker points that move with the velocity of the fluid normal to the
vortex sheet while executing an arbitrary tangential motion. Evolution equations for
the vectorial jump in the velocity across the vortex sheet, the vectorial strength of the
vortex sheet, and the scalar circulation field or strength of the effective dipole field
following the marker points are derived. The computation of the self-induced motion
of the vortex sheet requires the accurate evaluation of the strongly singular Biot-
Savart integral whose existence requires that the normal vector varies in a continuous
fashion over the vortex sheet. Two methods of computing the principal value of
the Biot-Savart integral are implemented. The first method involves computing the
vector potential and the principal value of the harmonic potential over the vortex
sheet, and then differentiating them in tangential directions to produce the normal
or tangential component of the velocity, in the spirit of generalized vortex methods
developed by Baker (1983). The second method involves subtracting off the dominant
singularity of the Biot-Savart kernel and then accounting for its contribution by
use of vector identities. Evaluating the strongly singular Biot-Savart integral is thus
reduced to computing a weakly singular integral involving the mean curvature of
the vortex sheet, and this allows the routine discretization of the vortex sheet into
curved elements whose normal vector is not necessarily continuous across the edges,
and the computation of the self-induced velocity without kernel desingularization.
Numerical simulations of the motion of a closed or periodic vortex sheet immersed
in a homogeneous fluid confirm the effectiveness of the numerical methods for a
limited time of evolution. Numerical instabilities arise after a certain evolution time
due to the ill-posedness of vortex sheet dynamics. The motion may be regularized
by desingularizing the Biot-Savart kernel using either Krasny’s (1986b) method or
spectrum truncation. Depending, however, on the physical mechanism that drives the
motion, the instabilities may persevere.

1. Introduction
A vortex sheet is a mathematical idealization of a homogeneous fluid layer, or

a heterogeneous layer straddling the interface between two different fluids, across
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which the magnitude and possibly the direction of the velocity changes rapidly
between two different values. As the thickness of the vortex layer tends to zero
while the jump in the velocity is held constant, a surface of discontinuity arises
and is identified as a vortex sheet. In reality, the notion of a vortex sheet whose
thickness is and remains infinitesimal at all times is acceptable only in the context
of inviscid flow. In the presence of viscosity, tangential stresses cause the singular
vorticity distribution supported by the vortex sheet to instantaneously spread out,
smearing the discontinuity. Notwithstanding this physical limitation, vortex sheets are
of interest for two main reasons. First, they provide us with convenient computational
models for studying the dynamics of a class of vortex flows at high Reynolds numbers,
at scales that are larger than an appropriate inverse power of the Reynolds number
defined with respect to the instantaneous thickness of a vortex layer. Second, the study
of vortex sheet dynamics allows us to develop insight into the analytical structure
of solutions of the Euler equations associated with self-induced vortex motion. The
general subject of vorticity dynamics and vortex methods has been reviewed by
Leonard (1985), Saffman (1992), and Puckett (1993).

Following Rosenhead’s (1931) point vortex approximation, several numerical meth-
ods have been developed for simulating the exact or regularized self-induced motion
of vortex sheets in two dimensions. Unfortunately, the generalization of the point
vortex method to axisymmetric or genuine three-dimensional flows is prohibited by
an intrinsic difficulty: the low-order discretization of a curved vortex sheet produces
either vortex rings and curved vortex lines with unbounded self-induced velocities, or
vortex particles whose induced velocity does not describe solutions of the Euler equa-
tions even in a weak sense of the term. As a remedy, the motion may be regularized
by arbitrarily or judiciously assigning non-zero size to the vortex core, thus obtaining
vortex blobs. To study the behaviour of a true vortex sheet, however, the limit of van-
ishing core size must be taken simultaneously with the limit of an increasingly refined
discretization. An alternative is to use a higher order spatial discretization, thereby
maintaining the continuity of the singular vortex sheet. Agishtein & Migdal (1989)
and Caflisch, Li & Shelley (1993) implemented discretizations based on B-splines or
quartic spline interpolation for axisymmetric flows.

Because of the failure of computational models based on low-order discretization, a
numerical method for computing the self-induced motion of three-dimensional vortex
sheets must necessarily incorporate three features. First, the geometry of the vortex
sheet must be described in global or local parametric form by high-order interpolation
or approximation. Second, the principal value of the Biot-Savart integral must be
computed with sufficient accuracy. Third, the evolution equations of the variables
defining the shape of the vortex sheet, such as the position of nodes that define
surface elements, and the vorticity transport equation governing the strength of the
vortex sheet or circulation along a contour that pierces the vortex sheet at two
specified points, must be integrated in time using numerical methods.

Agishtein & Migdal (1989) implemented a numerical procedure that discretizes a
vortex sheet into flat triangles defined by three vertices. Brady, Leonard & Pullin
(1998) implemented an adaptive discretization into cubic Bèzier triangular patches
whose collection comprises a smooth surface with continuous normal vector. Lozano,
Garcı̀a-Olivares & Dopazo (1998) considered the flow induced by a doubly periodic
vortex sheet and implemented a discretization into rectangular patches. In these
computational studies, the principal value of the Biot-Savart integral was computed
by first desingularizing its strongly singular kernel using a variant of the δ-method
introduced by Krasny (1986b) for two-dimensional flow, and then applying fixed or
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adaptive numerical integration quadratures. Now, as the size of the regularization
parameter δ is reduced, the integration methods become increasingly ineffective or
else inaccurate, eventually leading to failure. Thus, even the instantaneous self-induced
velocity field associated with a specified vorticity distribution cannot be computed.

With the exception of the recent work of Haroldsen & Meiron (1998) discussed
in the next paragraph, a numerical method for the direct evaluation of the principal
value of the Biot-Savart integral over a discretized three-dimensional vortex sheet
without kernel regularization has not been developed. The main difficulty is that the
Biot-Savart kernel exhibits a strong 1/r2 singularity; as a consequence, the principal
value of the integral exists only when the normal vector varies over the vortex sheet in
a continuous fashion. In contrast, the kernel of the double-layer harmonic potential
diverges only weakly as 1/r, and the principal value of the integral exists even
on a discontinuous surface. The requirement on geometrical smoothness appears
to invalidate the local discretization of vortex sheets into flat or curved elements
with edge discontinuities in the normal vector, and this considerably complicates the
implementation of numerical methods. We shall see, however, that a judicious method
of reducing the order of the singularity by use of integral identities circumvents this
essential difficulty and allows the implementation of standard boundary element
methods.

Haroldsen & Meiron (1998) developed a method for computing the principal
value of the Biot-Savart integral over a doubly periodic vortex sheet using the
modified double trapezoidal rule on a rectangular grid, where the singular contribution
is excluded from the summation. Their error analysis shows that the trapezoidal
approximation introduces an error that may be expressed as a series of odd powers
of the grid size, starting with the first power. With 32 divisions in each direction,
corresponding to 1024 surface patches, the relative error is on the order of 10%, which
is substantial. The repetitive application of Richardson extrapolation allows significant
improvements, but the additional CPU and logistical effort discourages the use of the
method for carrying out dynamical simulations. In contrast, the single application
of Richardson extrapolation to the corresponding point vortex approximation of a
vortex sheet in two dimensions yields a spectrally accurate method (Shelley 1992).
This fundamental difference in the behaviour of the error underlines the importance
of maintaining the continuity of vortex lines in the numerical approximation.

Baker, Meiron & Orszag (1982) and Baker (1983) developed generalized vortex
methods for interfacial flow whose distinguishing feature is that the flow is represented
by a distribution of potential dipoles oriented normally to the vortex sheet. The
strength of the dipoles is equal to the circulation along a closed contour that pierces
the vortex sheet through a fixed and a variable marker or Lagrangian point. In the
generalized vortex method, the principal value of the Biot-Savart integral is computed
by evaluating the vector potential and principal value of the harmonic potential over
the vortex sheet, and then differentiating them in tangential directions to produce
the normal or tangential component of the velocity. Baker, Meiron & Orszag (1984)
implemented and demonstrated the success of the method for axisymmetric flow, and
Baker & Moore (1989) studied its performance in comparison with the point vortex
method for two-dimensional flow.

In this work, we implement numerical methods for the direct or indirect evalu-
ation of the Biot-Savart integral for three-dimensional flow based on conventional
surface triangulation into curved quadratic elements, accompanied by isoparametric
interpolation. The Biot-Savart integral, vector potential, and principal value of the
harmonic potential are evaluated in terms of surface integrals exhibiting a strong
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or weak singularity. The former is subtracted off by use of an integral identity, and
the latter is handled by integrating in local curvilinear coordinates using the polar
integration rule. The new methodology allows the efficient computation of the self-
induced velocity without kernel desingularization. When a vortex sheet is discretized
into 512 elements, the relative error in the computation of the Biot-Savart integral is
on the order of 0.1%, which is at least two orders of magnitude less than that corre-
sponding to the trapezoidal discretization (Haroldsen & Meiron 1998). The accuracy
of the numerical method is found to be adequate for dynamical simulations with a
modest number of elements, but regularization is necessary for suppressing inherent
instabilities encountered in vortex sheet dynamics.

To compute the evolution of a three-dimensional vortex sheet, we require evolution
equations for the strength of the vortex sheet or circulation field over the vortex
sheet. Several authors have shown that, in the case of a vortex sheet embedded in a
homogeneous fluid, the circulation along a closed contour that pierces the vortex sheet
at two specified marker points moving with the principal velocity of the vortex sheet
remains constant in time (Caflisch 1988; Agishtein & Migdal 1989). Corresponding
equations for vortex sheets separating fluids with different densities in the presence of
surface tension have been derived by Wu (1995) and Lozano et al. (1998), although
certain discrepancies exist in the final forms of their equations. The properties of the
integral equations for the rate of change of the strength of the vortex sheet have not
been discussed in detail by previous authors.

In this paper, several contributions to the theory and computation of the self-
induced motion of three-dimensional vortex sheets are made. First, a comprehensive
set of equations governing the motion of closed or periodic three-dimensional vortex
sheets, regarded as the interfaces between two inviscid fluids in the presence of
surface tension, is presented. Second, the properties of the integral equations for the
rate of change of the jump in the velocity across the vortex sheet, the strength of the
vortex sheet, and the circulation or strength of the effective dipole distribution are
discussed. Third, numerical methods for describing the motion of vortex sheets based
on standard boundary element methods are developed. Fourth, numerical methods
for computing the principal value of the Biot-Savart integral based on vortex sheet
triangulation using conventional or generalized vortex methods are compared. Finally,
representative simulations of the motion of vortex sheets immersed in homogeneous
fluids are presented.

Describing evolving surfaces by triangulation is now a standard choice in various
fields of interfacial dynamics, as reviewed by Pozrikidis (2000b), and the developments
in this work highlight the problem of vortex sheet dynamics against the more general
framework of the dynamics of advancing fronts. Overall, this work offers extensions
of the mature field of vortex sheet dynamics in two dimensions to its more challenging
and much less studied counterpart for three-dimensional flow.

2. Vortex sheet kinematics
Consider a three-dimensional closed, singly or doubly periodic vortex sheet sep-

arating two inviscid fluids, as depicted in figure 1, possibly in the presence of an
impenetrable surface that conforms with the periodicity of the flow, not shown in
the figure. We denote the designated exterior or upper, and interior or lower, side of
the vortex sheet, respectively, by the subscript or superscript + or −, and introduce
the unit vector n that is normal to the vortex sheet and points into the exterior
fluid labeled +, as shown in figure 1. In the case of doubly periodic flow depicted
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Figure 1. Schematic illustration of (a) a closed, (b) a singly periodic, and (c) a doubly periodic
vortex sheet. The vortex sheet marks the interface between two inviscid fluids with generally different
densities, in the presence of surface tension.

in figure 1(c), the periodicity of the vortex sheet is described by the two arbitrary
base vectors a1 and a2, so that any doubly periodic scalar, vectorial, or higher-order
geometrical or flow variable q satisfies the periodicity condition q(x) = q(x+X n). The
points X n define the vertices of a planar lattice parallel to the (x, y)-plane, located at
X n = i1a1 + i2a2, where i1 and i2 are two integers.

The vortex sheet separates two immiscible inviscid fluids with densities ρ+ and ρ−,
with the interface exhibiting constant and uniform surface tension T . In the absence
of viscous stresses, a force balance over an infinitesimal control volume enclosing a
small section of the interface requires that the pressure p undergo a discontinuity
across the vortex sheet given by

p− − p+ = T 2κm (2.1)
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where κm = 1
2
∇ · n is the mean curvature of the interface. In the absence of interfacial

tension, the pressure and thus its tangential gradient is continuous across the interface,
but the normal derivative is generally discontinuous.

By definition, the normal component of the fluid velocity is continuous across the
vortex sheet, but the tangential component undergoes a discontinuity defined as

∆u ≡ u+ − u−. (2.2)

The velocity field on either side of the vortex sheet may be decomposed into a contin-
uous, generally rotational component denoted by u∞, and a non-analytic irrotational
component associated with the discontinuity represented by the vortex sheet, denoted
by uVS . Expressing the velocity of the irrotational component on either side of the
vortex sheet in terms of a harmonic potential, we find

∆u = P · ∇(φ+ − φ−) = P · ∇Γ (2.3)

where P = I − nn is the tangential projection operator, I is the identity matrix, φ+

and φ− are the harmonic potentials evaluated on either side of the vortex sheet, and
Γ ≡ φ+−φ−. It can be shown by standard arguments that Γ is the circulation along
a closed loop that pierces the vortex sheet at a reference point and an arbitrary point,
where the integral defining the circulation is directed as shown in figure 1.

The vectorial strength of the vortex sheet ζ is related to the velocity discontinuity
by the relation

∆u ≡ ζ × n. (2.4)

Taking the cross-product of both sides of equation (2.4) and the normal vector, noting
that ζ is tangential to the vortex sheet, and using (2.3), we find

ζ = n× ∆u = n× ∇Γ . (2.5)

In the case of two-dimensional flow, ζ is taken to be parallel to the z-axis, whereupon
the fluid velocity vector and jump ∆u lie in the (x, y)-plane. In the case of axisymmetric
flow, ζ points in the direction of the meridional angle ϕ, and the fluid velocity and
jump ∆u lie in meridional planes over which ϕ is constant.

In terms of the strength of the vortex sheet, the velocity induced by the vortex
sheet at the point x0 is given by the Biot-Savart integral

uVS = −
∫
D

∇G(x, x0)× ζ(x) dS(x) (2.6)

where the gradient ∇ operates with respect to the coordinates of the integration point
x, and D is an appropriate domain of integration, as will be discussed in the next
paragraph. The scalar kernel G(x, x0) is a Neumann function of Laplace’s equation
corresponding to the periodicity of the flow, and observing the geometry of the
boundaries. In the case of flow in an infinite domain and in the absence of boundaries,
G(x, x0) is the free-space Green’s function. More generally, G(x, x0) is chosen so that
the Biot-Savart integral satisfies the no-penetration boundary condition, as required.

In the case of non-periodic flow, the integration domain D in (2.6) is the surface
of the vortex sheet; for flow in free space, G(x, x0) represents the harmonic potential
at the point x due to a point sink of unit strength located at the point x0, given
by G(x, x0) = 1/(4π|x − x0|). In the case of singly periodic flow, D is the portion of
the vortex sheet enclosed by one period of the flow; for flow in free space, G(x, x0)
represents the flow due to a one-dimensional array of point sinks of unit strength, one
of which is located at the point x0. The computation of the singly periodic free-space
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Green’s function is discussed by Brady et al. (1998). In the case of doubly periodic
flow, D is the portion of the vortex sheet enclosed by one period of the flow; for flow
in free space, G(x, x0) represents the flow due to a doubly periodic array of point
sinks of unit strength, one of which is located at the point x0. The computation of
the doubly periodic free-space Green’s function in terms of Ewald sums is discussed
in Appendix A.

The principal velocity of the vortex sheet, denoted by uPV , is defined as the average
of the fluid velocity on either side of the vortex sheet, and is given by

uPV (x0) ≡ u+(x0) + u−(x0)

2
= u∞(x0)−

∫ PV

D

∇G(x, x0)× ζ(x) dS(x) (2.7)

where the point x0 lies on the vortex sheet. The principal value of the Biot-Savart
integral may be regarded either as the limit of the non-singular integral that arises
by excluding from the domain of integration a discoidal surface patch centred at the
singular point, and then taking the limit as the size of the patch tends to zero, or
as the average of the limiting values of the Biot-Savart integral that arises as the
velocity point approaches the vortex sheet from either side. Expressing the variables
of integration in local Cartesian coordinates with two axes tangential to the vortex
sheet at a point, and examining the behaviour of the integrand with reference to
standard integrals, we find that the two values are identical, as stated by Agishtein &
Migdal (1989) and rigorously proved by Caflisch (1988) and Caflisch & Li (1992).

In terms of the principal velocity, the fluid velocity on either side of the vortex
sheet is given by

u±(x0) = uPV (x0)± 1
2
∆u(x0) = uPV (x0)± 1

2
ζ(x0)× n(x0) (2.8)

which is the counterpart of the Plemelj formula in three dimensions.
The solenoidal vector potential of the flow induced by the vortex, denoted by

AVS , is defined by the decomposition u = u∞ + ∇× AVS and is given by the integral
representation

AVS (x0) =

∫
D

G(x, x0)× ζ(x) dS(x). (2.9)

The flow due to a vortex sheet may be regarded as being induced by a double-layer
potential whose scalar strength q is related to the strength of the vortex sheet by the
equation

ζ = n× ∇q (2.10)

(e.g. Pozrikidis 1997, p. 502). Comparing (2.5) and (2.10) we find that, in fact, q = Γ .
Substituting (2.10) into (2.9), and integrating by parts, we find an alternative expression
for the vector potential in the terms of the circulation field,

AVS (x0) = −
∫
D

Γ (x) n(x)× ∇G(x, x0) dS(x). (2.11)

The kernel of the integral representation (2.11) has a strong singularity compared to
that of (2.9).

In terms of the circulation, the harmonic potential at a point x0 that lies within
either fluid is given by

φVS (x0) =

∫
D

Γ (x) n(x) · ∇G(x, x0) dS(x). (2.12)

The properties of the Green’s function ensure that shifting the level of the circulation
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generates a constant potential on either side of the vortex sheet with no consequence
for the flow. The principal value of the harmonic potential is defined as the average
of the two values of the potential on either side of the vortex sheet, and is equal to
the principal value of the double-layer integral on the right-hand side of (2.12).

To describe the motion of a vortex sheet, we introduce a system of two surface
curvilinear coordinates (ξ, η) defined over the evolving vortex sheet such that a
tangential line of constant η, a tangential line of constant ξ, and a line that is
parallel to the normal vector at a point comprise a system of right-handed local
three-dimensional curvilinear coordinates, as shown in figure 1. Using (2.5) we find
that, in terms of the circulation, the strength of the vortex sheet is given by

ζ =
hξhη

hS

(
∂Γ

∂lξ
tη − ∂Γ

∂lη
tξ

)
(2.13)

where hξ and hη are metric coefficients for the arclength corresponding to ξ or η, lξ ,
lη , are the corresponding arclengths, hS is the metric coefficient for the surface area,
and tξ , tη are unit vectors in the directions of the curvilinear axes corresponding to
the respective subscript (Caflisch 1988; Agishtein & Migdal 1989; Kaneda 1990).

To this end, we regard the vortex sheet as a material surface consisting of a
continuous distribution of marker points that are labelled permanently by the initial
values of the curvilinear coordinates. Kinematic considerations require that the normal
component of the marker point velocity be equal to the normal component of the
velocity of the fluid on either side of the vortex sheet. The tangential component,
however, may be arbitrary. In general, the marker point velocity, denoted by U , may
be assigned the form

U = uPV + v (2.14)

where v is an arbitrary tangential vector field. When v = 0, the marker points move
with the principal velocity of the vortex sheet; whereas when v = −P · uPV , the
marker points move only normally to the vortex sheet. The appropriate choice of
the marker point velocity depends on the character of the motion, and should be
exercised with the practical objective of preventing marker point clustering leading
to numerical instabilities and deterring the spatial resolution. For example, when the
vortex sheet is stationary, it is appropriate to choose when v = −P · uPV , so that the
marker points are also stationary. When, on the other hand, the vortex translates
as a rigid body with velocity UTR without deformation, it is appropriate to choose
v = P · (UTR − uPV ), so that the marker points retain their relative position.

The choice v = 0 may be generalized by setting v = (α − 1
2
)∆u, where α is an

arbitrary parameter. Substituting this expression into (2.14) we obtain the marker
point velocity, a weighted average of the fluid velocity on either side of the vortex
sheet,

U = α u+ + (1− α) u−. (2.15)

When α = 0, 1/2, 1, the marker points move, respectively, with the velocity of the
fluid on the interior or lower side of the vortex sheet, the principal velocity of the
vortex sheet, and the velocity of the fluid on the exterior or upper side of the vortex
sheet. Although α may be assigned arbitrarily over the vortex sheet, for simplicity it
will be assumed to be and remain constant and uniform over the vortex sheet during
the motion.

The rate of change of a scalar or vectorial quantity q defined over the vortex sheet
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following the marker points is denoted as d/dt and is given by

dq

dt
≡
(
∂q

∂t

)
ξ,η

=

(
∂q

∂t

)
x

+U · ∇q (2.16)

where the Eulerian derivatives on the right-hand side are computed after the function
q has been extended into the whole space in an appropriate fashion.

If the position of the marker points is described by the function X (ξ, η, t), then the
motion of the marker points is governed by the equation defining the marker point
velocity,

dX

dt
= U (2.17)

subject to a specified initial condition. In addition to (2.17), we require an evolution
equation for the jump in the velocity across the vortex sheet ∆u, the strength of the
vortex sheet ζ, or the circulation Γ following the marker points. The derivation of
these equations is now considered.

3. Vorticity dynamics
One way to derive an evolution equation for ∆u or ζ is to write Euler’s equation

for the motion of the fluid on either side of the vortex sheet, and then use (2.8) and
(2.14) to express the velocities on either side of the vortex sheet in terms of (a) the
principal velocity uPV or marker point velocity U , and (b) the jump in the velocity
across the vortex sheet, ∆u. An alternative is discussed by Baker & Moore (1989).
Working either way, we find that the rate of change of the velocity jump across the
vortex sheet satisfies the equation

d∆u

dt
= −∆u · ∇uPV + v · ∇∆u+ 2A

(
duPV

dt
− v · ∇uPV + 1

4
∆u · ∇∆u

)
+

2

ρ+ + ρ−
∇(p− − p+)− 2A g (3.1)

where v is the tangential component of the marker point velocity defined in equation
(2.14), A = (ρ− − ρ+)/(ρ− + ρ+) is the Atwood ratio, and g is the acceleration due
to gravity. To eliminate the pressures, we project equation (3.1) onto the tangential
plane to form the tangential derivatives of the pressure, and then use the dynamic
condition (2.1). To derive an evolution equation for ζ, we take the cross× product of
(3.1) with the normal vector n, and use the identity

n× d∆u

dt
=

dζ

dt
+ n

(
ζ · dn

dt

)
(3.2)

to extract the rate of change of ζ. The rate of change of the normal vector is given
by

dn

dt
= −(P · ∇U ) · n. (3.3)

When the flow on either side of the vortex sheet is irrotational, an evolution
equation for the circulation Γ may be derived by considering Bernoulli’s equation
for the motion of the fluid on either side of the vortex sheet, as explained by Baker
et al. (1982) and Baker (1983) for two-dimensional flow. Invoking the definition
Γ = φ+ − φ−, and expressing the velocity on either side of the vortex sheet in terms
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of the right-hand side of (2.8), we find

dΓ

dt
= v · ∆u+ 2A

[
dφPV

dt
− 1

2
(U + v) · uPV + 1

8
|∆u|2 − g · x

]
+

2T

ρ+ + ρ−
2κm.

(3.4)

3.1. Motion with a weighted average velocity

When the marker point velocity is given by (2.15), the evolution equation for ∆u takes
the specific form

d∆u

dt
= −n

(
∆u · dn

dt

)
+ 2P ·

[
A

duPV

dt
− A3 ∆u · ∇U

+A4 ∆u · ∇∆u+
2T

ρ+ + ρ−
∇κm − A g

]
(3.5)

where

A3 =
ρ+ + α(ρ− − ρ+)

ρ− + ρ+
, A4 =

ρ−α2 − ρ+(1− α)2

ρ− + ρ+
. (3.6)

The first term on the right-hand side of (3.5) expresses the component of d∆u/dt
normal to the vortex sheet. The rest of the terms on the right-hand side express
the component of d∆u/dt tangential to the vortex sheet. The rate of change of the
principal velocity of the vortex sheet in the second term on the right-hand side of
(3.5) is found by differentiating (2.7), obtaining(

duPV (x0)

dt

)
t=t0

=

(
du∞(x0)

dt

)
t=t0

−
∫ PV

D

∇G(x, x0)×
(

dζ(x)

dt

)
t=t0

dS(x)

− d

dt

∫ PV

D

∇G(x, x0)× ζ(x, t0) dS(x). (3.7)

Expressing ζ in terms of ∆u using (2.5), and substituting the result into (3.7) and the
outcome into (3.5), we obtain a Fredholm integral equation of the second kind for
d∆u/dt that may be stated in the symbolic form

d∆u

dt
(x0, t0)

= −2A

∫ PV

D

P(x0) ·
{
∇G(x, x0)×

[
n(x)×

(
d∆u(x)

dt

)
t=t0

]}
dS(x) + J (x0, t0) (3.8)

where J is a forcing function. To this end, we note that the normal component of
d∆u/dt is given explicitly by the first term on the right-hand side of (3.5) which has
been absorbed into the forcing function J ; thus, (3.8) is truly an integral equation for
the tangential component of d∆u/dt. As the integration point x approaches the field
point x0, the gradient of the Green’s function on the right-hand side of (3.8) tends
to become tangential to the vortex sheet, exhibiting a 1/r2 singularity that matches
the dimension of the domain of integration, where r = |x− x0|. It appears then that
the integral operator is not compact even when the normal vector is continuous over
the vortex sheet. We note, however, that as x approaches x0, the integrand in (3.8)
behaves as

1

r2
P(x0) ·

{
x− x0

r
×
[
n(x)×

(
d∆u(x)

dt

)
t=t0

]}
. (3.9)
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The cross-product of the two terms within the square brackets tends to become
tangential to the vortex sheet, and the cross-product of the two terms within the curly
brackets tends to become perpendicular to the vortex sheet and its projection onto
the tangential plane tends to vanish at a linear rate with respect to r. Consequently,
the singularity is truly on the order of 1/r, and the integral operator in (3.9) is only
weakly singular.

The compactness of the integral operator allows us to study the properties of the
integral equation and assess the convergence of Neumann iterations working within
the framework of the Riesz–Fredholm theory, as discussed by Baker et al. (1982) for
two-dimensional flow. This result is consistent with the aforementioned equivalence
of the flow due to a vortex sheet and the flow due to a double-layer potential whose
density is equal to the circulation field. The spectral analysis of the double-layer
potential operator reveals that the integral equation (3.8) has a globally convergent
Neumann series, and the solution can be found using the method of successive
substitutions provided that the magnitude Atwood ratio is not equal to unity; that is,
provided that the density of neither fluid is equal to zero.

The evolution equation for the strength of the vortex sheet corresponding to
equation (3.5) is found to be

dζ

dt
= −n

(
ζ · dn

dt

)
+ 2n×

[
A

duPV

dt
− A3 ∆u · ∇U

+A4 ∆u · ∇∆u+
2T

ρ+ + ρ−
∇κm − A g

]
. (3.10)

Repeating the preceding arguments, we find that (3.10) is a Fredholm integral equation
of the second kind for the tangential component of dζ/dt whose properties are similar
to those of (3.8) discussed in the preceding paragraph.

The associated evolution equation for the circulation is found to be

dΓ

dt
= (α− 1

2
) |∆u|2 + 2A

{
dφPV

dt
− 1

2

[
uPV + (2α− 1) ∆u

] · uPV
+ 1

8
|∆u|2 − g · x

}
+

2T

ρ+ + ρ−
2 κm (3.11)

which is a Fredholm integral equation of the second kind for dΓ/dt. Differentiating
(2.3) in time following the marker points, using (3.11), and carrying out a fair amount
of algebra, we recover (3.8).

3.2. Motion with the principal velocity

When the marker points move with the principal velocity of the vortex sheet, corre-
sponding to α = 1

2
, in which case A3 = 1

2
and A4 = 1

4
A, the evolution equations (3.8)

and (3.10) simplify to

d∆u

dt
= ∆u · (∇uPV ) · (I − 2P) + 2A P · (ā− g) +

4T

ρ+ + ρ−
P · ∇κm, (3.12)

dζ

dt
= n[ζ · (∇uPV ) · n]− n× (∆u · ∇uPV ) + 2A n× (ā− g) +

4T

ρ+ + ρ−
n× ∇κm

(3.13)
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where

ā =
1

2

(
Du+

Dt
+

Du−

Dt

)
=

duPV

dt
+ 1

4
∆u · ∇∆u (3.14)

is the average acceleration of the fluid on either side of the vortex sheet, and D/Dt is
the material derivative. Correspondingly, the evolution equation (3.11) simplifies to

dΓ

dt
= 2A

(
dφPV

dt
− 1

2
|uPV |2 + 1

8
|∆u|2 − g · x

)
+

2T

ρ+ + ρ−
2κm. (3.15)

When the flow on either side of the vortex sheet is irrotational, we write
n · (∇ × uPV ) = 0, and find that the first two terms on the right-hand side of
(3.13) combine to yield the alternative form

dζ

dt
= ζ · (∇uPV )− ζ (P · ∇ · uPV ) + 2A n× (ā− g) +

4T

ρ+ + ρ−
n× ∇κm

(3.16)

which is in agreement with equation (64) derived by Wu (1995) using a different
approach. Furthermore, using an identity derived in Appendix B, we write

d∆u

dt
=

d

dt
(P · ∇Γ ) = P · ∇dΓ

dt
+ ∆u · (∇uPV ) · (I − 2P) (3.17)

and recast equation (3.12) in terms of the circulation over the vortex sheet in the form

P · ∇dΓ

dt
= 2AP · (ā− g) +

4T

ρ+ + ρ−
P · ∇κm. (3.18)

Invoking the definition of the mean acceleration defined in terms of the material
derivative in equation (3.14), and using Bernoulli’s equation for unsteady irrotational
flow, we find

ā = ∇
(

dφPV

dt
− 1

2
|uPV |2 + 1

8
|∆u|2

)
. (3.19)

Substituting this expression into the left-hand side of (3.18), and integrating over the
vortex sheet, we recover equation (3.15) governing the evolution of the circulation.

When the densities of the fluids are matched, in which case the Atwood ratio
vanishes, A = 0, we obtain a simple evolution law for the circulation

dΓ

dt
=
T

ρ
2κm. (3.20)

In the absence of surface tension, T = 0, we obtain a conservation law derived
previously by Caflisch (1988), Agishtein & Migdal (1989), Kaneda (1990), and Caflisch
& Li (1992) using direct methods. The stipulations leading to (3.20) with vanishing
surface tension have been described as the ‘Lagrangian formulation’ by these authors.

When the marker point velocity is equal to the velocity of the fluid normal to
the vortex sheet, we obtain a different set of evolution equations. When A = 0,
corresponding to a vortex sheet immersed in a homogeneous fluid, the evolution
equations for ∆u, ζ, and Γ are identical to (3.12), (3.13), and (3.15), except that the
convective term −P · uPV · ∇∆u, −n× (uPV · ∇∆u), or P · uPV · ∇Γ , respectively, is also
present on the right-hand side.
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4. Computation of the self-induced velocity

To compute the motion of marker points moving with a weighted average of the
fluid velocity on either side of the vortex sheet, we require the principal value of
the Biot-Savart integral. To compute the motion of marker points moving normal to
the vortex sheet, we require only the normal component of the Biot-Savart integral.
Even in the second case, however, the tangential component is necessary for evaluating
the rate of change of the strength of the vortex sheet or circulation following the
marker points.

To compute the Biot-Savart integral, a closed vortex sheet, or one period of a
singly or doubly periodic vortex sheet, is triangulated into a network of quadratic
curved triangles defining six nodes: three vertex nodes and three mid-nodes. The
position vector, circulation field, Cartesian components of the strength of the vortex
sheet, and Cartesian components of the jump in velocity across the vortex sheet
are approximated with quadratic basis function in terms of local triangle coordinates
given, for example, in Pozrikidis (1998). With this type of discretization, the tangential
derivatives of surface functions and the components of the normal vector undergo
a discontinuity across the element edges. Whenever the normal vector or another
discontinuous surface function is needed at the nodes, it is computed by averaging
its components at the local nodes of all adjacent triangles. In the case of the normal
vector, averaging is followed by normalization.

4.1. Computation of the normal component of the velocity in terms of
the vector potential

Baker (1983) developed an indirect method of computing the component of the
fluid velocity normal to the vortex sheet that involves three steps: (a) introduce
the vector potential AVS associated with the vortex sheet defined by the equation
u = u∞ + ∇× AVS ; (b) evaluate the vector potential over the vortex sheet using
the integral representation (2.9) or (2.11); and (c) differentiate the components of
the vector potential in the tangential plane to obtain the normal component of the
velocity induced by the vortex sheet.

In the present implementation, the surface integral (2.9) is computed by integrating
over the collection of the curved triangles distributed over the vortex sheet. As the
integration point x approaches the evaluation point x0, the kernel of the vector-
potential integral operator on the right-hand side of (2.9) exhibits a weak singularity,
diverging as 1/|x − x0|. The integral over a singular triangle that contains the point
evaluation point x0 as a node is computed by integrating in local triangle polar co-
ordinates centred at the singular point, using the double Gauss–Legendre quadrature.
Specifically, when x0 is a vertex node, the integral is computed over the flat triangle
defined by the three vertex nodes, whereas when x0 is a mid-node, the integral is
computed over four flat triangles defined by the mid-node and pairs of the rest of the
vertex and mid-nodes. The integral over the non-singular triangles is computed using
a triangle quadrature (e.g. Pozrikidis 1998).

As an alternative, the vector potential may be evaluated from the integral rep-
resentation (2.11). As the integration point x approaches the field point x0, the
gradient of the Green’s function tends to become tangential to the vortex sheet,
exhibiting a 1/|x− x0|2 singularity. Baker (1983) noted that the identity∫

D

n(x)× ∇G(x, x0) dS(x) = 0 (4.1)
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allows us to subtract off the singularity by writing

AVS (x0) = −
∫
D

[Γ (x)− Γ (x0)] n(x)× ∇G(x, x0) dS(x). (4.2)

The integrand on the right-hand side of (4.2) diverges only weakly as 1/|x − x0|,
and the integral may be computed using the numerical method described in the last
paragraph.

Once the vector potential is available at all marker points, the three columns of
the Frechet derivative ∇AVS are computed at the nodes of the triangles by solving
the following three systems of three linear equations:

∂x

∂ξ
· ∇AVS =

∂AVS

∂ξ
,

∂x

∂η
· ∇AVS =

∂AVS

∂η
, n · ∇AVS = 0. (4.3)

where ξ and η are local triangle coordinates, and n is the normal vector at the nodes
averaged over the host elements. Computing the tangential derivatives of AVS in
this fashion is simpler and more expedient than taking derivatives with respect to
the surface curvilinear coordinates. Following this computation, the matrix ∇AVS is
averaged at the nodes over the neighbouring elements, and the curl ∇ × AVS arises
from its skew-symmetric component. Finally, projecting ∇ × AVS in the direction
normal to the vortex sheet yields the normal component of the velocity.

To test the accuracy of the method, we consider uniform flow with velocity U along
the x-axis past a stationary sphere of radius a centred at the origin, and represent the
velocity field by a superposition of the incident streaming flow and the flow induced
by a vortex sheet with strength ζ = − 3

2
Ua eϕ, where eϕ is the unit vector pointing in

the meridional direction around the x-axis. The level of triangulation is determined by
the index Ntr; when Ntr = 0, the vortex sheet is divided into eight curved triangles that
arise by projecting the vertices and mid-points of the edges of an octahedron onto
the sphere; when Ntr = 1, each triangle is subdivided into four descendant triangles
generated by connecting the vertex and mid-point nodes; each time Ntr is increased
by one unit, a further subdivision is carried out, quadrupling the number of elements.
The RMS value of the relative error in the normal component of the marker point
velocity for Ntr = 0, 1, 2, 3, corresponding to 8, 32, 128, and 512 elements, is found
to be, respectively, 0.015840, 0.00288, 0.000244, and 0.00002395, which suggests that
the results converge linearly with respect to the size of the boundary elements, as
expected.

4.2. Computation of the tangential component of
the velocity in terms of the harmonic potential

Baker (1983) developed an indirect method of computing the component of the fluid
velocity tangential to a vortex sheet in terms of the circulation field; the latter is either
provided or computed from the strength of the vortex sheet by surface integration. The
numerical method involves evaluating the principal value of the harmonic potential
over the vortex sheet using the integral representation (2.12), and then computing its
tangential gradient.

As the integration point x approaches the evaluation point x0, the kernel of (2.12)
exhibits a 1/|x− x0| singularity. Use of the polar integration rule over flat triangles
to annihilate this singularity is prohibited by the fact that the kernel of the integral
representation vanishes identically over a flat surface passing through the singular
point. Consequently, neglecting the curvature of the vortex sheet introduces an error
on the order of the mean radius of curvature multiplied by the typical element size.
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Figure 2. Test of accuracy in the evaluation of the tangential component of the velocity for
streaming flow with velocity U along the x-axis past a stationary sphere of radius a. The tangential
velocity is computed by taking tangential derivatives of the principal value of the harmonic potential.
The figure shows a graph of the x-component of the principal velocity at the marker points for three
levels of discretization. The circles, squares, and diamonds correspond, respectively, to discretization
into 128, 256, and 512 elements. In the exact solution, the data fall on a sinusoidal curve with
amplitude 0.75.

To circumvent this difficulty in the case of a closed vortex sheet, we use the identity∫ PV

D

n(x) · ∇G(x, x0) dS(x) = − 1
2

(4.4)

and write

φVS (x0) =

∫
D

[Γ (x)− Γ (x0)] n(x) · ∇G(x, x0) dS(x)− 1
2
Γ (x0). (4.5)

As the integration point x approaches the evaluation point x0, the kernel of the
integral on the right-hand side of (4.5) tends to a finite value that depends on the
direction of x − x0. The integral is computed with sufficient accuracy over regular
and singular triangles using a triangle quadrature. Once the principal value of the
potential is available at all surface nodes, its tangential gradient is computed using
the counterpart of equations (4.3).

To assess the accuracy of the method, we repeated the computations described at
the end of § 4.1 for uniform flow past a stationary sphere represented by a vortex
sheet. Figure 2 displays the x-component of the principal velocity at the marker points
for three levels of discretization. In the absence of numerical error, the data should
fall on a sinusoidal curve with amplitude 0.75U. For the third level of discretization
corresponding to 512 boundary elements, the maximum relative error is on the order
of 0.1%, which demonstrates the effectiveness of the numerical method even when a
moderate number of boundary elements are employed.
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4.3. Direct computation of the Biot-Savart integral

The direct computation of the principal value of the self-induced velocity of the vortex
sheet, given in equation (2.6) where the point x0 lies on the vortex sheet, is more
challenging. It was mentioned earlier that a central difficulty is that the principal value
of the Biot-Savart integral exists only when the normal vector varies in a continuous
fashion over the vortex sheet, that is, when the vortex sheet is a Lyapunov surface.
If the normal vector is discontinuous at a point, then the principal value is not de-
fined. This mathematical condition stems from the physical requirement of continuous
vortex lines for a solenoidal vorticity field and a non-singular velocity field. The de-
mand on smoothness appears to invalidate local vortex-sheet discretization into non-
smooth approximated surfaces, including the discretization into quadratic triangles
employed on the present study; the use of high-order global or local discretization
defined in terms of Hermite interpolation appears imperative. Previous investigators
circumvented this difficulty by regularizing the Biot-Savart kernel, thereby replacing
the jump in the velocity across the vortex sheet with a rapidly varying distribution.
We find that the demand on geometrical smoothness may be bypassed by subtracting
off the Biot-Savart singularity and then using integral identities to account for its
contribution, working as follows.

For illustration, we consider a closed vortex sheet, and recast the principal value of
the self-induced velocity given in (2.7) in the form

uPV (x0) = u∞(x0)−
∫
D

∇G(x, x0)× [ζ(x)− ζ(x0)] dS(x)

+ζ(x0)×
∫ PV

D

∇G(x, x0) dS(x). (4.6)

As the integration point x approaches the evaluation point x0, the kernel of the first
integral on the right-hand side of (4.6) diverges weakly as 1/|x− x0|, and the integral
may be computed with sufficient accuracy using a numerical method that is analogous
to that described in § 4.1 for the vector potential.

To compute the principal value of the last integral on the right-hand side of (4.6),
we express it in the form∫ PV

D

∇G(x, x0) dS(x) =

∫ PV

D

[n(x)− n(x0)] n(x) · ∇G(x, x0) dS(x)

+n(x0)

∫ PV

D

n(x) · ∇G(x, x0) dS(x) +

∫ PV

D

P(x) · ∇G(x, x0) dS(x) (4.7)

where P = I − nn is the tangential projection operator. As the integration point x
approaches the evaluation point x0, the kernel of the first integral on the right-hand
side of (4.7) tends to a finite value that depends on the direction of x−x0. This integral
may be computed with sufficient accuracy using a triangle quadrature. Conservation
of mass for the flow due to a point sink requires that the principal value of the second
integral on the left-hand side of (4.7) is equal to − 1

2
.

To compute the last integral on the right-hand side of (4.7), we use Stokes’s theorem
of vector calculus and derive the identity∮

C

F × t dl =

∫
Ω

[n ∇ · F − (∇F ) · n] dS (4.8)

where Ω is an arbitrary open surface bounded by the closed contour C , n is the
unit vector normal to Ω, t is the unit vector tangential to C and Ω, and F is
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an arbitrary vector function defined over Ω (e.g. Pozrikidis 1997, p. 640). Selecting
F (x) = G(x, x0) n(x), and noting that, because the length of the unit normal vector is
fixed, (∇n) · n = 0, we find∮

C

G(x, x0) n× t dl = −
∫
Ω

P(x) · ∇G(x, x0) dS +

∫
Ω

2κm(x) G(x, x0) n(x) dS (4.9)

where κm = 1
2
∇ · n is the mean curvature; the vector t × n is tangential to the surface

and lies in a plane that is normal to C . Identifying now Ω with the surface of a closed
vortex sheet, denoted by D, excluding from it a small discoidal surface of radius ε
centred at the singular point x0, and letting ε tend to zero, we find∫ PV

D

P(x) · ∇G(x, x0) dS =

∫
D

2κm(x) G(x, x0) n(x) dS. (4.10)

The kernel of the integral on the right-hand side of (4.10) diverges only weakly as
1/|x − x0|, and the integral may be computed accurately using a numerical method
similar to that described earlier for the vector potential.

It is reassuring to observe that the Green’s function in all preceding expressions
may be enhanced by a constant, but the integral identity∫

D

2κm(x) n(x) dS = 0 (4.11)

which arises by applying (4.8) with F (x) = n(x), guarantees that this modification
will not affect the value of the integral on the right-hand side of (4.10). Thus, identity
(4.10) is consistent with the expected independence of the flow on the base level of
the vector or harmonic potential.

It is important to note that, if the surface D were discretized into flat elements,
such as three-node triangles, the integral on the right-hand side of (4.10) would be
identically equal to zero, and use of formula (4.10) would incur an error on the order
of unity. For example, integrating over the surface of a sphere in spherical polar
coordinates, we find ∫

Sphere

2κm(x) G(x, x0) n(x) dS = 2
3
n(x0). (4.12)

This result underscores the importance of maintaining the curvature of a vortex sheet
in the surface element discretization.

Returning to (4.7), we combine the preceding results and write∫ PV

D

∇G(x, x0) dS(x) =

∫ PV

D

[n(x)− n(x0)] n(x) · ∇G(x, x0) dS(x)

− 1
2
n(x0) +

∫
D

2κm(x) G(x, x0) n(x) dS(x). (4.13)

Substituting this expression into (4.6), we obtain the final result for a closed vortex
sheet

uPV (x0) = u∞(x0)− 1
2
ζ(x0)× n(x0)−

∫
D

∇G(x, x0)× [ζ(x)− ζ(x0)] dS(x)

+ζ(x0)×
∫ PV

D

[n(x)− n(x0)] n(x) · ∇G(x, x0) dS(x)

+ζ(x0)×
∫
D

2κm(x) G(x, x0) n(x) dS(x). (4.14)
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Figure 3. Same as figure 2, but with the velocity computed by evaluating the Biot-Savart integral.

In the numerical implementation, all integrals over non-singular elements on the
right-hand side of (4.14) are computed using a triangle quadrature. Over the singular
elements, the first and third integrals on the right-hand side are computed using
the polar integration rule described at the beginning of this section for the vector
potential. The mean curvature κm is computed from the second fundamental form of
the surface by differentiating with respect to local triangle barycentric coordinates.
Over the flat elements supporting a curved triangle, the mean curvature is assumed to
be constant and equal to the mean curvature at the centroid of the curved triangle.

To assess the accuracy of the method, we repeated the computations described
earlier for uniform flow past a stationary sphere represented by a vortex sheet. Figure
3 shows the x-component of the principal velocity at the marker points for three levels
of discretization. According to the exact solution, the data should fall on a sinusoidal
curve with amplitude 0.75U. For the third level of discretization corresponding to 512
boundary elements, the maximum relative error is on the order of 0.1%. Comparing
these results to those shown in figure 2, we find that, for a coarse discretization, the
indirect method of computing the velocity by differentiating the principal value of
the potential is superior. At higher resolutions, the performances of the two methods
are comparable.

An alternative method of evaluating the Biot-Savart integral was proposed recently
by Zinchenko, Rother & Davis (1999) and discussed further by Pozrikidis (2000b).
Using a series of vector identities, we find the following counterpart of expression
(4.14):

uPV (x0) = u∞(x0) + 1
2
ζ(x0)× n(x0)−

∫
D

∇G(x, x0)× [ζ(x)− ζ(x0)] dS(x)

+ζ(x0)×
∫
D

{[n(x0) n(x) + n(x) n(x0)] · ∇G(x, x0)

+[1− n(x0) · n(x)] ∇G(x, x0)} dS(x). (4.15)
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The second integral on the right-hand side of (4.15) involves a nonsingular but
multi-valued integrand that may be integrated over curved elements with sufficient
accuracy using a triangle quadrature. The importance of accounting for the curvature
of the vortex sheet is once again apparent: the second integral on the right-hand
side of (4.15) evaluated at a point over a flat element hosting the point is identically
equal to zero. Test computations for a spherical vortex sheet have shown that the
accuracy associated with (4.15) is comparable to that of the generalized vortex
method. We found, however, that expression (4.14) allows for more robust dynamical
simulations.

The results shown in figures 2 and 3 are representative of smooth shapes where the
position of the nodes and circulation field are specified to machine precision. During
a dynamical simulation, numerical error introduces fluctuations in the circulation
field, strength of the vortex sheet, and position of the marker points. Numerical
differentiation of the vector potential and principal value of the harmonic potential
in the tangential plane amplify the noise and thus degrade the performance of the
indirect method. In contrast, performing the Biot-Savart integral effectively smoothes
out the fluctuations.

Analogous equations can be derived for singly and doubly periodic vortex sheets. In
the case of a doubly periodic vortex sheet, the Green’s function discussed in Appendix
A satisfies the identity ∫ PV

D

n(x) · ∇G3D−2P (x, x0) dS(x) = 0. (4.16)

Accordingly, equations (4.13) and (4.14) hold with D identified with one period of the
vortex sheet, but the second term on the right-hand sides is absent.

5. Numerical simulations
The numerical methods described in the §§ 3 and 4 were implemented in a computer

program that is able to simulate the self-induced motion of closed or doubly periodic
vortex sheets separating two fluids with equal density, corresponding to vanishing
Atwood ratio, A = 0. An assortment of simulations were carried out to study the
performance of the numerical methods, compare the effectiveness of formulations
based on the time integration of the evolution equation for the jump in velocity
across the vortex sheet or distribution of the circulation, and compare the perform-
ance of the indirect and direct method for evaluating the Biot-Savart integral. In
this section, we discuss representative results of simulations for three prototypical
configurations.

In the simulations, the non-singular integrals over quadratic triangles were com-
puted by the seven-point triangle quadrature, and the singular integrals were computed
by the six-point double Gauss–Legendre quadrature (e.g. Pozrikidis 1998). Time in-
tegration was carried out by the explicit first- or second-order Euler method, with a
sufficiently small time step. In the simulations presented in this section, the marker
points move with the principal velocity of the vortex sheet. The change in the volume
enclosed by a closed vortex sheet was less than 0.1% for the duration of each simu-
lation. A complete run for a closed vortex sheet requires several hours of CPU time
on an INTEL 550 MHz personal computer rulling LINUX with the g77 FORTRAN
compiler. A complete run of a doubly-periodic vortex sheet requires five times as
much CPU time due to the expensive evaluation of the doubly periodic Laplace
Green’s function discussed in Appendix A.
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5.1. Deformation of a released spherical vortex sheet

Consider streaming flow with velocity U past a sphere of radius a, and regard the
surface of the sphere as a stationary vortex sheet whose induced velocity cancels the
normal component of the velocity of the incident flow to satisfy the no-penetration
boundary condition. At the origin of time, the interior of the sphere is assumed to be
filled by a fluid whose density is equal to that of the exterior fluid, and the sphere is
deformed into an ellipsoid. Even without initial deformation, convection of vorticity
toward the rear stagnation point causes the spherical vortex sheet to deform under
the influence of its self-induced velocity, while the flow and the shape of the vortex
sheet remain axisymmetric.

Figure 4 shows sequences of evolving profiles in a meridional plane of an initially
spherical vortex, computed with 512 elements defined by 1026 marker points, using
the second-order Euler method with time step ∆t = 0.01 a/U. Panels (a–d) correpond
to simulations based on alternative problem formulations, as will be discussed in
the next paragraph. In all cases, the instantaneous strength of the vortex sheet is
computed by requiring conservation of the circulation, as mandated by (3.20) for
vanishing surface tension. Integrating in time the evolution equation for the jump
in the velocity, equation (3.12) with A = 0 and T = 0, yielded results that are
indistinguishable within plotting resolution.

In the simulations shown in figure 4(a, b), the marker point velocity is computed,
respectively, indirectly according to the generalized vortex method or directly by
evaluating the Biot-Savart integral. The motion is regular for a limited period of
time, but numerical instabilities set in over the rear and upper portion of the vortex
sheet at later times where the vortex sheet is expected to roll up into an axisymmetric
spiral. The instability in the position of the marker points over a three-dimensional
vortex sheet is the counterpart of the sawtooth instability reported in previous
simulations for two-dimensional flow. The present numerical results suggest that the
direct method of evaluating the Biot-Savart integral is somewhat better than the
generalized vortex method.

One way to regularize the motion is to replace the distance |x− x0| in the denomi-
nator of the free-space Green’s function in the Biot-Savart kernel with the modified
distance (|x − x0|2 + a2δ2)1/2, where δ is a dimensionless smoothing parameter in-
troduced by Krasny (1986b) for two-dimensional flow. In figure 4(c, d), we present
sequences of evolving profiles for δ2 = 0.01 and 0.02. The instability is suppressed, with
the penalty that the fine geometrical features of the motion are sensitive to the value
of smoothing parameter δ2, in agreement with the findings of previous authors. These
simulations ended when the grid was no longer able to represent the deformed vortex
sheet with adequate resolution. In figure 4(e, f), we present three-dimensional views of
the deformed vortex at an advanced evolution stage for δ2 = 0.02, showing the severe
deformation of the interfacial elements and demonstrating the need for regridding.

Figure 5(a) shows the initial shape of an oblate spheroidal vortex sheet that is
axially symmetric about the z-axis, arising by deforming the spherical vortex sheet
while preserving the circulation at the marker points. The ratio of the initial spheroid
axes in the directions of the z- and x-axes is 3/4. Figure 5(b) shows the shape of
the vortex sheet at time t = 1.5 a/U, after the vortex sheet has deformed under the
influence of its self-induced velocity, computed with δ2 = 0.02. Important features of
the motion are the development of a cavity at the rear of the vortex sheet, and the
simultaneous ejection of a vortex tail. Severe stretching of the elements causes the
simulation to end at the time corresponding to figure 5(b).
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Figure 4. (a–d) Sequences of evolving profiles in a meridional plane of an initial spherical vortex
sheet, computed with 512 elements, at dimensionless times ta/U = 0, 0.2, 0.3, . . .: (a) unregularized
motion computed by the generalized vortex method; (b–d) motion computed by directly evaluating
the Biot-Savart integral with δ = 0, 0.01, 0.02. (d, f) Three-dimensional perspectives of the shape of
the vortex sheet at the end of the simulation with δ2 = 0.02.
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Figure 5. Three-dimensional perspectives of (a) the initial and (b) an advanced stage in the evolution
of an initially oblate spheroidal vortex sheet that arises by deforming the sphere while preserving
the circulation at the marker points.

Additional simulations were carried out to study the effect of surface tension.
When surface tension is dominant, a spherical vortex sheet remains nearly stationary,
exhibiting only mild deformation. In this case, best results are obtained when the
marker points are required to move with the velocity of the fluid normal to the vortex
sheet, so that the surface grid is nearly stationary. Unfortunately, at large values
of surface tension, a prohibitively small time step is required to prevent numerical
instabilities, and the motion could be followed only for a limited period of time.

5.2. Oscillations of inviscid drops induced by surface tension

In a second case study, we consider the surface-tension-induced oscillations of a
neutrally buoyant inviscid drop suspended in an ambient inviscid fluid of infinite
expanse. Lamb (1932) studied the linearized motion and found that, in spherical
polar coordinates (r, θ, ϕ), the radius of a nearly spherical drop exhibiting small-
amplitude normal-mode oscillations is described by

r = a [1 + ε T
|m|
j (cos θ) cos(mϕ) sin(ωjt)] (5.1)

for j > 2 and m = 0,±1,±2, . . . ,±j, where a is the radius of the undeformed drop,
ε is a dimensionless number whose magnitude is small compared to unity, and ωj is
the angular frequency of the oscillations. In the case of a neutrally buoyant drop,

ωj =

√
T

ρa3

(j − 1)j(j + 1)(j + 2)

2j + 1
. (5.2)

The modified Legendre functions of degree j and order m on the right-hand side of
(5.1) are given by

T
|m|
j (cos θ) =

1

2

√
2j + 1

π

√
(j − |m|)!
(j + |m|)! P

|m|
j (cos θ) (5.3)

where P
|m|
j (cos θ) are the associated Legendre functions; P 0

j (cos θ) are the jth-
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degree Legendre polynomials (e.g. Korn & Korn 1961). The complex functions

Φmj ≡ T
|m|
j (cos θ) exp(−imϕ), where i is the imaginary unit, comprise an orthogonal

set. Using expressions for the potential provided by Lamb (1932), we find that the
circulation of the vortex sheet associated with the velocity discontinuity across the
drop surface is given by

Γ (θ, ϕ) ≡ φ+ − φ− = −ε ωj a2 2j + 1

j(j + 1)
T
|m|
j (cos θ) (5.4)

where the superscripts + and − denote, respectively, the exterior and interior side.
The total energy of the flow consists of the surface energy due to surface tension
given by ES = T SD , where SD is the instantaneous drop surface area, and the kinetic
energy of the interior and exterior flow denoted by EK . For fluids of equal density,
the kinetic energy may be expressed as an integral in terms of the circulation,

EK = − 1
2
ρ

∫
D

Γ n · ∇φ dS. (5.5)

In the absence of viscous dissipation, the total energy ET = ES + EK is an invariant
of the motion.

Figure 6 shows results of numerical simulations for the axisymmetric mode j = 2,
m = 0, where the drop oscillates between a prolate and an oblate shape, both axially
symmetric around the x-axis, for a moderate but non-infinitesimal amplitude ε = 0.10.
Figure 6(a) displays the evolution of the x semi-axis of the drop denoted by ax, reduced
by the radius of the spherical drop a, plotted against the reduced dimensionless time
t̂ ≡ t√ρa3/T . The solid and dotted lines correspond to simulations where the velocity
is computed directly from the Biot-Savart integral with δ2 = 0 or 0.01; the dashed,
long-dashed, and dot-dashed lines correspond to simulations where the velocity is
computed using the generalized vortex method, respectively, with δ2 = 0 or 0.02, or
with the circulation field smoothed after 20 times steps of size ∆t = 0.01

√
ρa3/T .

Smoothing of the circulation field was effected by expanding it in surface harmonics
over the undeformed sphere, and then truncating the expansion to eliminate the
high-frequency components, as discussed by Pozrikidis (2000a). According to linear
theory, the drop oscillates with period equal to 2.868

√
ρa3/T , and the amplitude of

the oscillation is equal to 0.063078a, corresponding to the vertical and horizontal
straight lines in figure 6(a).

At small times, the computed nonlinear motion is in good agreement with the pre-
dictions of linear theory, but all simulations develop incurable numerical instabilities
after a certain period of evolution. The longest surviving simulation corresponds to
the generalized vortex method with periodic smoothing of the circulation field. Even
this simulation, however, suffers from incurable numerical instabilities that could not
be eliminated even when the coordinates of the marker points were smoothed by
spectrum truncation. Figure 6(b) shows the evolution of the reduced surface energy,
ÊS ≡ ES/(4πTa2), reduced kinetic energy, ÊK ≡ ES/(4πTa2), and reduced total energy

Ê = ÊS + ÊK . The smooth behaviour at small times validates the numerical method
and suggests that if numerical instabilities did not arise, the simulation would have
preserved the total energy within the error expected due to the spatial discretization.
Similar results were obtained for non-axisymmetric modes.

Pozrikidis (2000a) successfully simulated the surface-tension-induced oscillations of
inviscid drops suspended in a zero-density ambient fluid, corresponding to Atwood
ratio of unity. His simulations were conducted using a generalized vortex method in
which the surface distribution of the potential is updated using Bernoulli’s equation
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Figure 6. (a) Oscillations of the x semi-axis of the drop computed by several methods, as described
in the text; (b) correponding oscillations of the surface, kinetic, and total energy of the flow.

for the interior flow, and the surface circulation is computed by solving an integral
equation. Periodic smoothing of the potential over the free surface was sufficient for
eliminating irregularities, and allowed the motion to be described for an indefinite
period of time. The present simulations reveal the occurrence of more severe insta-
bilities for zero value of the Arwood ratio in a surface-tension-induced flow.

5.3. Kelvin–Helmholtz instability of a doubly periodic vortex sheet

Next, we turn our attention to a doubly periodic vortex sheet embedded in a
homogeneous fluid. When the vortex sheet is flat and parallel to the (x, y)-plane,
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Figure 7. (a) Stages in the Kelvin–Helmholtz instability of a vortex sheet subject to a normal-mode
two-dimensional perturbation, computed with δ2 = 0.02. The circles mark the positions of marker
points. (b) A three-dimensional view corresponding to the last instant shown in (a).

and its strength sheet ζ is uniform, we obtain a surface of discontinuity separating
two adjacent steams with different uniform velocities. Small perturbations initiate the
Kelvin–Helmholtz instability leading to periodic roll-up, as described by numerous
previous authors. The analytic structure of the vortex sheet subject to two-dimensional
perturbations, and the spontaneous formation of a geometrical singularity discovered
by Moore (1979) have been studied extensively by analytical and numerical methods
(e.g. Cowley, Baker & Tanveer 1999).
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Figure 8. (a) The initial, and (b) an advanced stage in the evolution of a doubly periodic vortex
sheet subject to a three-dimensional perturbation.

In the numerical studies, the motion of the vortex sheet is computed subject to
generally three-dimensional perturbations. In the simulations, one period of the vortex
sheet is discretized into 512 elements defined by 1090 marker points. To confirm the
consistency of the method, the motion of a vortex sheet was first simulated subject
to small-amplitude two-dimensional normal-mode perturbations with wavenumber
vectors perpendicular to the strength of the vortex sheet, and excellent agreement
was confirmed with the growth rates predicted by linear stability theory. In the
absence of regularization, sawtooth instabilities develop, as observed in previous
simulations of two-dimensional flow using the point vortex method and higher-
order discretizations. As in the case of a closed vortex sheet discussed in § 5.1, the
instabilities may be suppressed by regularizing the Biot-Savart kernel using Krasny’s
(1986b) modification.

Figure 7(a) shows a sequence of profiles of a perturbed vortex sheet in the (y, z)-



Self-induced motion of vortex sheets 361

plane, at dimensionless times tU/L = 0, 0.12, 0.24, . . . , computed with δ2 = 0.02; U
is the magnitude of the velocity far above and below the vortex sheet, and L is the
wavelength of the perturbation. Regularization was effected by replacing the distance
|x − x0| in the denominator of the most singular term of the real-space sum of the
doubly periodic Green’s function with the modified distance (|x − x0|2 + L2δ2)1/2

(Appendix A). Each one of the circles in figure 7(a) is a superposition of a group
of circles marking the position of corresponding element nodes over one period in
the spanwise direction. The nearly perfect superposition confirms that the computed
flow remains two-dimensional. The motion was followed up to the point where
the interfacial grid failed to describe the motion with sufficient accuracy, and the
simulation failed. Figure 7(b) shows a three-dimensional view of the rolled-up sheet
illustrating the element distribution at an advanced stage of the motion.

Figure 8(a, b) shows the initial and an advanced stage in the evolution of an
infinite vortex sheet subject to a doubly periodic perturbation corresponding to the
orthogonal base vectors a1 = L(1, 0, 0) and a2 = L(0, 1, 0), directed along the x- or
y-axes, computed with δ2 = 0.02. At the initial instant, the amplitude of the marker
point displacement in the streamwise or spanwise directions is equal, respectively,
to 0.005L and 0.10L, where the spanwise disturbance is superposed on a normal-
mode two-dimensional perturbation. The evolution leads to formation of corrugated
spanwise structures observed in previous simulations of shear flow, but the motion
could not be computed at long times without compromising the accuracy due to
insufficient spatial resolution.

6. Discussion
We have derived and discussed equations governing the self-induced motion of

closed and periodic three-dimensional vortex sheets; we have developed numerical
methods for computing the principal value of the Biot-Savart integral without regu-
larizing the kernel; and we have implemented a method for simulating the motion of
vortex sheets using standard boundary-element discretization. Numerical simulations
have shown that the methods successfully describe the motion of vortex sheets for a
limited period of time, up to the point where numerical instabilities dominate. Pre-
vious experience with two-dimensional vortex sheets suggests that the time when the
computations break down may be delayed by reducing the interpolation error using
a large number of marker points or elements, by reducing the integration error using
high-order quadratures, and by carrying out the computations in extended precision.
In principle, these improvements may also be applied to the case of three-dimensional
flow. In practice, however, the computational cost is so high that only special cases
can be considered.

We have found that when the motion of a vortex sheet evolving in a homogeneous
fluid is regularized using Krasny’s method, the motion in the absence of surface
tension may be followed up to the point where the grid becomes so distorted that
the motion may no longer be described with sufficient resolution. In the presence
of surface tension, or when the densities of the fluids on either side of the vortex
sheet are not equal, kernel regularization alone may not be sufficient for filtering out
numerical instabilities, and direct smoothing by diffusion or spectrum truncation may
be necessary (Kerr 1988, Pozrikidis 2000a). An effective method of smoothing the
position of marker points defining the triangulation has not been developed.

Even with regularization and smoothing implemented, adaptive triangulation
according to local curvature is necessary for continuing the simulations at long
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times and for capturing roll-up. Brady et al. (1998) mapped sections of a vortex
sheet onto a planar rectangle in parametric space, and regridded in the plane using
error estimates based on the square of the mean curvature. Their simulations typi-
cally start with a number of triangles on the order of 103, and end with a number
of triangles on the order of 105. Kwak & Pozrikidis (1998) used the advancing
front method to adaptively regrid directly in physical space according to the local
or mean directional curvature, thereby circumventing the need for mapping. Com-
bining the advancing front method with the methods developed in this work is
under current development. Even with an efficient adaptive method for regridding
implemented, the spontaneous development of fine scales in vortex sheet dynamics
requires exceedingly large computer memory storage and computing time, and this
is a main practical concern in performing simulations for an extended period of
time.

Moore (1979) discovered, and subsequent researchers confirmed, that a singularity
in curvature spontaneously occurs during the Kelvin–Helmholtz instability of a two-
dimensional vortex sheet after a finite evolution time. Ishihara & Kaneda (1994,
1995) used perturbation expansions to study the development of a singularity on a
three-dimensional vortex sheet subject to doubly periodic perturbations. Their results
provided evidence for loss of the analyticity at a critical time, but the nature of the
singularity could not be described. The numerical methods developed in this work
provide a means for probing the nature of the singularity following, for example, the
approach of Krasny (1986a). This investigation will be pursued in a future study.

This research is supported by a grant provided by NASA.

Appendix A. Computation of the doubly periodic Green’s function of
Laplace’s equation

We consider the computation of the doubly periodic Green’s function of Laplace’s
equation in three dimensions, denoted by G3D−2P , satisfying the equation ∇2G3D−2P +∑
δ(x− xn) = 0, where δ is the three-dimensional delta function, and the summation

is over all singular points located at xn = x0 + X n; x0 is the position of an arbitrary
singular point, and the vectors X n define the vertices of a two-dimensional lattice
located at

X n = i1 a1 + i2 a2 (A 1)

where i1 and i2 are two integers, and a1 and a2 are two unit base vectors parallel
to the (1, 2)- or (x, y)-plane, as shown in figure 1(c). Physically, the Green’s function
represents the harmonic potential due to a doubly periodic array of point sinks with
negative unit strength. As the field point x moves far above or below the (x, y)-plane,
the Green’s function exhibits the asymptotic behaviour G3D−2P ' −|z|/(2Ac), where
Ac = |a1 × a2| is the area of one unit cell.

To compute the periodic Green’s function, we introduce the reciprocal wavenumber
base vectors

b1 =
2π

Ac
a2 × ez, b2 =

2π

Ac
ez × a1, (A 2)

where ez is the unit vector along the z-axis, and define the vertices of the reciprocal
wavenumber lattice

lλ = j1 b1 + j2 b2 (A 3)

where j1 and j2 are two integers. Using the method of Fourier transform, we find that
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the Green’s function is given by

G3D−2P (x, x0) =
1

2Ac

[
− |x̂0 · ez|+

∑
λ

1

|lλ| cos(lλ · x̂0) exp(−|lλ| |x̂0 · ez|)
]

(A 4)

where x̂n ≡ x − xn is the distance of the field point x from the nth singular point
xn. The zero wavenumber is excluded from the summation on the right-hand side of
(A 4).

Expression (A 4) is useful only when the field point x is located sufficiently far from
the plane of the singularities, for then the exponential factors multiplying the cosines
decay at a fast rate. As the observation point approaches the plane of the singularities,
the accurate evaluation of the Fourier series requires an increasing number of terms;
and when the observation lies in the plane of the singularities, the summation
fails.

Several attempts have been made by previous authors to compute the Green’s
function in terms of Ewald sums (Baker et al. 1984; Sangani & Behl 1989). We find
that an indirect method developed by Hautman & Klein (1992) in the context of
molecular electrostatics is the best approach. Adapted to the present context, the
method involves defining the projection of the field point x onto the plane of the
singularities, denoted by s, and introducing the distance of the projection from a
singular point xn, defined as ŝn ≡ s − xn. The Green’s function is computed in five
parts using the exact decomposition

G3D−2P (x, x0) = − 1

2Ac
|x̂0 · ez|+ 1

4π
[R(x, x0) + S0(s)− 1

2
|x̂0 · ez|2 S1(s)

+ 3
8
|x̂0 · ez|4 S2(s)] (A 5)

where

R(x, x0) ≡
∑
n

[
1

|x̂n| −
1

|ŝn| +
1

2

|x̂0 · ez|2
|ŝn|3 − 3

8

|x̂0 · ez|4
|ŝn|5

]
(A 6)

and the summation is over all singular points. The summed terms on the right-hand
side of (A 6) decay like 1/|ŝ|7, and this expedites the numerical computation. When,
in particular, the observation point x lies in the plane of the singularities, R(x, x0)
is identically equal to zero and its evaluation is not required. More generally, the
indices i1 and i2 introduced in (A 1) for summing in the plane of the singularities on
the right-hand side of (A 6), may be truncated at an appropriate level that depends
on the distance of the evaluation point from the plane of the singularities. The three
new functions on the right-hand side of equation (A 5) are computed from the Ewald
decompositions

S0(s) =
∑
n

1−H0(ξ|ŝn|)
|ŝn| +

2π

Ac

[
− 1√

πξ
+
∑
λ

1

|lλ| cos(lλ · ŝ0) erfc

( |lλ|
2ξ

)]
,

S1(s) =
∑
n

1−H1(ξ|ŝn|)
|ŝn|3 − 2π

Ac

∑
λ

|lλ| cos(lλ · ŝ0) erfc

( |lλ|
2ξ

)
,

S2(s) =
∑
n

1−H2(ξ|ŝn|)
|ŝn|5 − 2π

Ac

1

9

∑
λ

|lλ|3 cos(lλ · ŝ0) erfc

( |lλ|
2ξ

)
,


(A 7)

where erfc is the complementary error function, ξ is a Ewald summation parameter
determining the balance between the sums in real and wavenumber space on the
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right-hand sides of expressions (A 7), and the zero wavenumber is excluded from the
second sums involving the cosines. The splitting functions H0, H1, and H2 involved in
the real-space sums are given by

H0(w) = erf(w), H1(w) = erf(w)− 2√
π
w(1 + 2w2) exp(−w2),

H2(w) = erf(w)− 2√
π
w(1 + 2

3
w2 − 4

9
w4 + 8

9
w6) exp(−w2),

 (A 8)

where erf is the error function. The Gaussian decay of these functions, combined
with the Gaussian decay of the complementary error function on the right-hand
sides of (A 7), is a key to the efficiency of the numerical method. The results are,
and have been confirmed to be, independent of the splitting parameter ξ, with
the optimal value for the least amount of computational effort depending on the
lattice geometry. In practice, with the optimal choice, the indices i1 and i2 defined in
equation (A 1) for summing in real space, and the indices j1 and j2 defined in equation
(A 3) for summing in wavenumber space, are truncated at a moderate level between
2 and 5.

The second method of computing the Green’s function is useful when a field point
is located near, or lies in, the plane of the singularities. As the field point moves
far from the plane of the singularities, the Fourier series method described earlier
becomes more efficient.

Appendix B. Proof of identity (3.17)
Consider a system of surface curvilinear coordinates (ξ, η) defined over the surface

of an evolving three-dimensional vortex sheet, as shown in figure 1. In terms of the
circulation Γ , the jump in the tangential velocity across the vortex sheet is given by

∆u =
1

1− β2

[(
1

hξ

∂Γ

∂ξ
− β 1

hη

∂Γ

∂η

)
tξ +

(
1

hη

∂Γ

∂η
− β 1

hξ

∂Γ

∂ξ

)
tη

]
(B 1)

where tξ and tη are the unit vectors along the ξ- or η-axis, hξ and hη are the
corresponding metric coefficients, and β = tξ · tη . To simplify the proof, we assume
that at a particular time instant, the surface curvilinear coordinates are locally
orthogonal corresponding to β = 0, but do not necessarily remain orthogonal, that
is, dβ/dt 6= 0. Differentiating (B 1) following the motion of the marker points, we find

d∆u

dt
=

1

hξ

∂Γ

∂ξ

dtξ
dt

+

[
d

dt

(
1

hξ

∂Γ

∂ξ

)
− dβ

dt

1

hη

∂Γ

∂η

]
tξ

+
1

hη

∂Γ

∂η

dtη
dt

+

[
d

dt

(
1

hη

∂Γ

∂η

)
− dβ

dt

1

hξ

∂Γ

∂ξ

]
tη. (B 2)

Next, we invoke the evolution laws for the rate of change of the length of a material
vector (e.g. Pozrikidis 1997, Chap. 1), and find the following expressions:

dtξ
dt

= tξ · (∇uPV ) · (I − tξ tξ), dtξ
dt

= tη · (∇uPV ) · (I − tηtη),
d

dt

(
1

hη

∂Γ

∂ξ

)
=

1

hξ

∂

∂ξ

(
dΓ

dt

)
− 1

hξ

∂Γ

∂ξ
tξ · (∇uPV ) · tξ,

d

dt

(
1

hη

∂Γ

∂η

)
=

1

hη

∂

∂η

(
dΓ

dt

)
− 1

hη

∂Γ

∂η
tη · (∇uPV ) · tη.


(B 3)
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Working in a similar manner, under the assumption that the tangential field of the
principal velocity is irrotational, we find

dβ

dt
= 2tη · (∇uPV ) · tξ + 2tξ · (∇uPV ) · tη. (B 4)

Substituting relations (B 3) and (B 4) into (B 2), we obtain

d∆u

dt
=

1

hξ

∂

∂ξ

(
dΓ

dt

)
+

1

hη

∂

∂η

(
dΓ

dt

)
+

(
1

hξ

∂Γ

∂ξ
tξ +

1

hη

∂Γ

∂η
tη

)
· (∇uPV ) · (I − 2tξtξ − 2tηtη) (B 5)

which implies (3.17).
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